Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Adv Healthc Mater ; : e2400102, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657167

RESUMO

The phosphorylated noncollagenous proteins (NCPs) play a vital role in manipulating biomineralization, while the mechanism of phosphorylation of NCPs in intrafibrillar mineralization of collagen fibril has not been completely deciphered. Poly(vinylphosphonic acid) (PVPA) and sodium trimetaphosphate (STMP) as templating analogues of NCPs induce hierarchical mineralization in cooperation with indispensable sequestration analogues such as polyacrylic acid (PAA) via polymer-induced liquid-like precursor (PILP) process. Herein, we propose STMP-Ca and PVPA-Ca complexes to achieve rapid intrafibrillar mineralization through polyelectrolyte-Ca complexes pre-precursor (PCCP) process. This strategy is further verified effectively for remineralization of demineralized dentin matrix both in vitro and vivo. Although STMP micromolecule fails to stabilize amorphous calcium phosphate (ACP) precursor, STMP-Ca complexes facilely permeate into intrafibrillar interstices and trigger phase transition of ACP to hydroxyapatite within collagen. In contrast, PVPA-stabilized ACP precursors lack liquid-like characteristic and crystallize outside collagen due to rigid conformation of PVPA macromolecule, while PVPA-Ca complexes infiltrate into partial intrafibrillar intervals under electrostatic attraction and osmotic pressure as evidenced by intuitionistic three-dimensional stochastic optical reconstruction microscopy (3D-STORM). The study not only extends the variety and size range of polyelectrolyte for PCCP process but also sheds light on the role of phosphorylation for NCPs in biomineralization. This article is protected by copyright. All rights reserved.

2.
Adv Healthc Mater ; : e2303870, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412305

RESUMO

Magnesium ions are highly enriched in early stage of biological mineralization of hard tissues. Paradoxically, hydroxyapatite (HAp) crystallization is inhibited significantly by high concentration of magnesium ions. The mechanism to regulate magnesium-doped biomimetic mineralization of collagen fibrils has never been fully elucidated. Herein, it is revealed that citrate can bioinspire the magnesium-stabilized mineral precursors to generate magnesium-doped biomimetic mineralization as follows: Citrate can enhance the electronegativity of collagen fibrils by its absorption to fibrils via hydrogen bonds. Afterward, electronegative collagen fibrils can attract highly concentrated electropositive polyaspartic acid-Ca&Mg (PAsp-Ca&Mg) complexes followed by phosphate solution via strong electrostatic attraction. Meanwhile, citrate adsorbed in/on fibrils can eliminate mineralization inhibitory effects of magnesium ions by breaking hydration layer surrounding magnesium ions and thus reduce dehydration energy barrier for rapid fulfillment of biomimetic mineralization. The remineralized demineralized dentin with magnesium-doped HAp possesses antibacterial ability, and the mineralization mediums possess excellent biocompatibility via cytotoxicity and oral mucosa irritation tests. This strategy shall shed light on cationic ions-doped biomimetic mineralization with antibacterial ability via modifying collagen fibrils and eliminating mineralization inhibitory effects of some cationic ions, as well as can excite attention to the neglected multiple regulations of small biomolecules, such as citrate, during biomineralization process.

3.
Colloids Surf B Biointerfaces ; 235: 113776, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364520

RESUMO

Decades of research have been conducted on 10-Methacryloyloxydecyl dihydrogen phosphate (MDP) through numerous studies. The mechanisms by which its residual calcium salts benefit dentin bonding remain undetermined. The objective of the research was to investigate the role and process of remaining calcium salts in the priming procedure and their capacity for remineralization. The investigation focused on the variations in topological structure, mechanical properties, and chemical interactions between the main agent and the dentin surface. Two adhesive modes including prime-and-rinse(P&R) and prime-and-nonrinse (P&NR) utilized to evaluate the bonding performance and remineralization ability. The findings indicated that both P&R and P&NR methods could eliminate the smear-layer, uncover dentinal-tubules, and generate a textured/rough surface on the dentin. Collagen fibrils exhibited a greater presence of inorganic minerals in the P&NR mode. Compared to control group, both P&R and P&NR groups improved immediate and aging bond strength significantly (P < 0.05). AFM and 3D-STORM revealed MDP and its residual calcium salts distributed in collagen fibrils and expanded collagen matrix. In the P&NR group, TEM revealed that the dentin collagen matrix experienced some remineralization, and there was also mineralization within the collagen fibrils embedded in the bonding interface. Thus, MDP priming improved dentin bonding stability. Residual calcium salts of P&NR process can enhance topological structure of the collagen matrix and induce intrafibrillar mineralization.


Assuntos
Cálcio , Sais , Dentina , Metacrilatos/química , Colágeno/química , Teste de Materiais , Resistência à Tração
4.
J Dent ; 142: 104843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272437

RESUMO

OBJECTIVES: The aim of this review was to analyze the clinical treatment outcomes of cracked teeth (CT) retaining vital dental pulp (CT-VDP) or undergoing root canal treatment (CT-RCT). SOURCES: A systematic search was conducted in Medline, Embase, PubMed, and Cochrane Library databases. STUDY SELECTION: Studies evaluating tooth survival rate (TSR), pulp survival rate (PSR), and success rate (SR) with at least a one-year follow-up were included. The risk of bias was evaluated with the Newcastle-Ottawa scale. DATA: Twenty-seven studies underwent qualitative analysis, 26 of which were included in the meta-analysis. SR of monitoring without restorative treatments was 80 % at three years. TSR of CT-VDP was 92.8-97.8 % at 1‒6 years, PSR of CT-VDP was 85.6‒90.4 % at 1‒3 years, and SR of CT-VDP was 80.6‒89.9 % at 1‒3 years; TSR of CT-RCT was 90.5‒91.1 % at 1‒2 years, and SR of CT-RCT was 83.0‒91.2 % at 1‒4 years. Direct restorations without cuspal coverage for CT-VDP increased the risk ratio (RR) of pulpal complications (RR=3.2, 95 % CI: 1.51-6.82, p = 0.002) and tooth extraction (RR=8.1, 95 % CI: 1.05-62.5, p = 0.045) compared with full-crown restorations. The CT-RCT without full-crown restorations had an 11.3-fold higher risk of tooth extraction than the CT-RCT with full-crown restorations (p < 0.001). CONCLUSIONS: Monitoring without restorative treatments might be an option for the CT without any symptoms. Direct restorations without cuspal coverage for the CT-VDP could significantly increase the RR of pulpal complications and tooth extraction compared with full-crown restorations. Full-crown restorations are strongly recommended for the CT-RCT. CLINICAL SIGNIFICANCE: Monitoring without restorative treatments could be a viable option for the CT without any symptoms. Full-crown restorations are strongly recommended for the CT with any symptoms and the CT-RCT.


Assuntos
Síndrome de Dente Quebrado , Restauração Dentária Permanente , Humanos , Coroas , Resultado do Tratamento , Tratamento do Canal Radicular
5.
Medicine (Baltimore) ; 103(4): e36882, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277536

RESUMO

RATIONALE: Dentinogenesis imperfecta (DI) is an autosomal-dominant disorder. The most common clinical manifestations, including obliterated tooth tissues and severe tooth wear, usually lead to tooth extractions. It remains a great challenge for dentists to preserve the residual tooth tissue and establish the esthetics and occlusion of dentitions. PATIENTS CONCERNS: 25-year-old twin sisters, who had suffered from dentinogenesis imperfecta type II for more than 10 years, presented with continuous tooth wear and discomfort from wearing a removable partial denture for more than 3 years. DIAGNOSIS: Intraoral examination showed extensive tooth wear with enamel exfoliation and typical amber-brown color with an opalescent discoloration. Their panoramic radiographs revealed completely obliterated tooth tissues and severe tooth wear. INTERVENTIONS AND OUTCOMES: The dentitions were restored with post-and-core crowns and pin lays after preparing root post paths and pin holes guided by computer-aided design/computer-aided manufacturing (CAD/CAM) procedures, resulting in a successful repair. LESSONS: Severe tooth wear and tooth tissue obliteration are typical clinical manifestations in DI-affected dentitions, increasing the complexity and difficulty in dental restorations. Early diagnosis and appropriate treatments are essential to achieve a favorable prognosis. CAD/CAM procedures, permitting accurate and effective treatment, possess promising potential in the treatment of DI-affected dentitions.


Assuntos
Dentinogênese Imperfeita , Desgaste dos Dentes , Dente , Adulto , Humanos , Coroas , Dentinogênese Imperfeita/reabilitação , Reabilitação Bucal , Feminino
6.
J Mech Behav Biomed Mater ; 151: 106408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244421

RESUMO

OBJECTIVES: This study was to investigate hydroxypropyl methylcellulose (HPMC) film as a carrier for amorphous fluorinated calcium phosphate (AFCP) nanoprecursors to continuously deliver biomimetic remineralization of enamel artificial caries lesions (ACL). MATERIALS AND METHODS: The AFCP/HPMC films were comprised of 25 wt% AFCP nanoparticles and 75 wt% HPMC. They were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and biocompatibility tests. Forty enamel ACL were prepared and randomly divided into four groups (n = 10): The enamel surfaces were covered with a pure HPMC film, Tooth Mousse Plus (contains 10% CPP-ACP and 0.2% NaF), and AFCP/HPMC film, or without any things (serving as negative control). Subsequently, all samples were alternatively kept in artificial saliva and a modified pH-cycling before they were characterized by Micro-CT, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflectance (ATR)-FTIR, XRD, and nanoindentation. RESULTS: After the enamel ACL was challenged by pH cycling, Tooth Mousse Plus and AFCP/HPMC film groups exhibited less lesion depth and mineral loss than the negative control and pure HPMC film groups. Additionally, the AFCP/HPMC film group revealed a highest remineralization rate of 55.34 ± 3.10 % among the all groups (p < 0.001). The SEM findings showed that the enamel ACL were densely deposited with minerals in the AFCP/HPMC film group, and the EDX results suggested a higher content of fluorine in the remineralized tissues. In particular, the AFCP/HPMC film group exhibited the best nanomechanical performance after 2 weeks of pH cycling (p < 0.05), with the hardness (H) restored from 0.29 ± 0.19 to 2.69 ± 0.70 GPa, and elastic modulus (Er) restored from 10.77 ± 5.30 to 68.83 ± 12.72 GPa. CONCLUSION: The AFCP/HPMC film might be used as a promising strategy for arresting or reversing incipient enamel caries lesions.


Assuntos
Suscetibilidade à Cárie Dentária , Cárie Dentária , Humanos , Derivados da Hipromelose , Remineralização Dentária/métodos , Fosfatos de Cálcio , Minerais , Cárie Dentária/tratamento farmacológico
7.
Adv Healthc Mater ; 13(10): e2303488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265149

RESUMO

Amphiphilic biomolecules are abundant in mineralization front of biological hard tissues, which play a vital role in osteogenesis and dental hard tissue formation. Amphiphilic biomolecules function as biosurfactants, however, their biosurfactant role in biomineralization process has never been investigated. This study, for the first time, demonstrates that aggregated amorphous calcium phosphate (ACP) nanoparticles can be reversed into dispersed ultrasmall prenucleation clusters (PNCs) via breakdown and dispersion of the ACP nanoparticles by a surfactant. The reduced surface energy of ACP@TPGS and the electrostatic interaction between calcium ions and the pair electrons on oxygen atoms of C-O-C of D-α-tocopheryl polyethylene glycol succinate (TPGS) provide driving force for breakdown and dispersion of ACP nanoparticles into ultrasmall PNCs which promote in vitro and in vivo biomimetic mineralization. The ACP@TPGS possesses excellent biocompatibility without any irritations to oral mucosa and dental pulp. This study not only introduces surfactant into biomimetic mineralization field, but also excites attention to the neglected biosurfactant role during biomineralization process.


Assuntos
Nanopartículas , Tensoativos , Biomineralização , Biomimética , Fosfatos de Cálcio/química , Polietilenoglicóis , Nanopartículas/química
8.
Nanoscale Adv ; 6(2): 467-480, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235102

RESUMO

Calcium carbonate (CaCO3), possessing excellent biocompatibility, bioactivity, osteoconductivity and superior biodegradability, may serve as an alternative to hydroxyapatite (HAp), the natural inorganic component of bone and dentin. Intrafibrillar mineralization of collagen with CaCO3 was achieved through the polymer-induced liquid precursor (PILP) process for at least 2 days. This study aims to propose a novel pathway for rapid intrafibrillar mineralization with CaCO3 by sequential application of the carbonate-bicarbonate buffer and polyaspartic acid (pAsp)-Ca suspension. Fourier transform infrared (FTIR) spectroscopy, zeta potential measurements, atomic force microscopy/Kelvin probe force microscopy (AFM/KPFM), and three-dimensional stochastic optical reconstruction microscopy (3D STORM) demonstrated that the carbonate-bicarbonate buffer significantly decreased the surface potential of collagen and CO32-/HCO3- ions could attach to collagen fibrils via hydrogen bonds. The electropositive pAsp-Ca complexes and free Ca2+ ions are attracted to and interact with CO32-/HCO3- ions through electrostatic attractions to form amorphous calcium carbonate that crystallizes gradually. Moreover, like CaCO3, strontium carbonate (SrCO3) can deposit inside the collagen fibrils through this pathway. The CaCO3-mineralized collagen gels exhibited better biocompatibility and cell proliferation ability than SrCO3. This study provides a feasible strategy for rapid collagen mineralization with CaCO3 and SrCO3, as well as elucidating the tissue engineering of CaCO3-based biomineralized materials.

9.
Int J Nanomedicine ; 19: 1-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38179219

RESUMO

Objective: This study was to investigate a novel antibacterial biomimetic mineralization strategy for exploring its potential application for root canal disinfection when stabilized cerium oxide was used. Material and Methods: A biomimetic mineralization solution (BMS) consisting of cerium nitrate and dextran was prepared. Single-layer collagen fibrils, collagen membranes, demineralized dentin, and root canal system were treated with the BMS for mineralization. The mineralized samples underwent comprehensive characterization using various techniques, including transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), selected-area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and micro-CT. Additionally, the antimicrobial properties of the BMS and the remineralized dentin were also analyzed with broth microdilution method, live/dead staining, and SEM. Results: Cerium ions in the BMS underwent a transformation into cerium oxide nanoparticles, which were deposited in the inter- and intra-fibrillar collagen spaces through a meticulous bottom-up process. XPS analysis disclosed the presence of both Ce (III) and Ce (IV) of the generated cerium oxides. A comprehensive examination utilizing SEM and micro-CT identified the presence of cerium oxide nanoparticles deposited within the dentinal tubules and lateral canals of the root canal system. The BMS and remineralized dentin exhibited substantial antibacterial efficacy against E. faecalis, as substantiated by assessments involving the broth dilution method and live/dead staining technique. The SEM findings revealed the cell morphological changes of deceased E. faecalis. Conclusion: This study successfully demonstrated antibacterial biomimetic mineralization as well as sealing dentinal tubules and lateral branches of root canals using cerium nitrate and dextran. This novel biomimetic mineralization could be used as an alternative strategy for root canal disinfection.


Assuntos
Cério , Cavidade Pulpar , Dentina/química , Desinfecção , Dextranos , Cério/farmacologia , Microscopia Eletrônica de Varredura , Colágeno , Antibacterianos/farmacologia
10.
Int J Biol Macromol ; 254(Pt 3): 127780, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907172

RESUMO

Dentine hypersensitivity (DH) is a common oral health issue and occlusion of the exposed dentinal tubules (DTs) is regarded as the most effective therapeutic treatment nowadays. However, it is still difficult to develop easy and effective strategies for deep occlusion of DTs. In this study, we develop a strategy for occluding DTs deeply and compactly via simple application of occlusion media including (poly-L-aspartic acid)­strontium (PAsp­strontium) and phosphate/fluoride. The bonding of strontium ions to poly-L-aspartic acid formed a positively charged PAsp­strontium complexes. After application of 15 min each, the PAsp­strontium and phosphate/fluoride rapidly penetrated into the DTs in turn via the electrostatic interaction, then occluded the DTs with crystals up to a depth of 150 µm. The occlusion within DTs was resistant to abrasive and acidic challenges. The occlusion media performed better than commercial desensitizers Duraphat and Gluma. Moreover, this strategy possessed sufficient biocompatible and excellent performance in vivo. The application of occlusion media would shed light on in the management of DH.


Assuntos
Sensibilidade da Dentina , Fluoretos , Humanos , Fluoretos/química , Estrôncio/química , Sensibilidade da Dentina/tratamento farmacológico , Ácido Aspártico/farmacologia , Fosfatos , Dentina , Microscopia Eletrônica de Varredura
11.
Dent Mater ; 40(2): 327-339, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065798

RESUMO

OBJECTIVES: Extrafibrillar demineralization is an etching technique that removes only minerals from around the collagen fibrils for resin infiltration. The intrafibrillar minerals are left intact to avoid their replacement by water that is hard for adhesive resin monomers to displace. The present work reported the synthesis of a water-soluble methacryloyloxy glycol chitosan-EDTA conjugate (GCE-MA) and evaluated its potential as an extrafibrillar demineralization agent for self-etch dentin bonding. METHODS: Glycol chitosan-EDTA was functionalized with a methacryloyloxy functionality. Conjugation was confirmed using Fourier transform-infrared spectroscopy. The GCE-MA was used to prepare experimental self-etch primers. Extrafibrillar demineralization of the primers was evaluated with scaning electron microscopy and transmission electron microscopy. The feasibility of this new self-etch bonding approach was evaluated using microtensile bond strength testing and inhibition of dentin gelatinolytic activity. The antibacterial activity and cytotoxicity of GCE-MA were also analyzed. RESULTS: Conjugation of EDTA and the methacryloyloxy functionality to glycol chitosan was successful. The functionalized conjugate was capable of extrafibrillar demineralization of mineralized collagen fibrils. Tensile bond strength of the experimental self-etch primer to dentin was comparable to that of phosphoric acid-etched dentin and the commercial self-etch primer Clearfil SE Bond 2. The GCE-MA also inhibited soluble rhMMP-9. In-situ zymography detected minimal fluorescence in hybrid layers conditioned with the experimental primer. The GCE-MA was noncytotoxic and possessed antibacterial activities against planktonic bacteria. SIGNIFICANCE: Synthesis of GCE-MA brought into fruition a self-etch conditioner that selectively demineralizes the extrafibrillar mineral component of dentin. A self-etch primer prepared with GCE-MA achieved bond strengths comparable to commercial reference adhesive systems.


Assuntos
Quitosana , Colagem Dentária , Ácido Edético/análogos & derivados , Desmineralização do Dente , Humanos , Ácido Edético/química , Cimentos Dentários , Colágeno/química , Antibacterianos , Dentina/química , Minerais , Água , Adesivos Dentinários/farmacologia , Adesivos Dentinários/química , Resistência à Tração , Cimentos de Resina/química , Teste de Materiais
12.
Artigo em Inglês | MEDLINE | ID: mdl-38036509

RESUMO

Surface modification of thermoplastic polyurethane (TPU) could significantly enhance its suitability for biomedical devices and public health products. Nevertheless, customized modification of polyurethane surfaces with robust interfacial bonding and diverse functions via a simple method remains an enormous challenge. Herein, a novel thermoplastic polyurethane with a photoinitiated benzophenone unit (BPTPU) is designed and synthesized, which can directly grow functional hydrogel coating on polyurethane (PU) in situ by initiating polymerization of diverse monomers under ultraviolet irradiation, without the involvement of organic solvent. The resulting coating not only exhibits tissue-like softness, controllable thickness, lubrication, and robust adhesion strength but also provides customized functions (i.e., antifouling, stimuli-responsive, antibacterial, and fluorescence emission) to the original passive polymer substrates. Importantly, BPTPU can be blended with commercial TPU to produce the BPTPU-based tube by an extruder. Only a trace amount of BPTPU can endow the tube with good photoinitiated capacity. As a proof of concept, the hydrophilic hydrogel-coated BPTPU is shown to mitigate foreign body response in vivo and prevent thrombus formation in rat blood circulation without anticoagulants in vitro. This work offers a new strategy to guide the design of functional polyurethane, an elastomer-hydrogel composite, and holds great prospects for clinical translation.

13.
Adv Healthc Mater ; : e2303002, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38018309

RESUMO

Remineralized dentin with an antibacterial ability is still a significant challenge in dentistry. Previously, a polyelectrolyte-calcium complexes pre-precursor (PCCP) process is proposed for rapid collagen mineralization. In the present study, the expansion concept of the PCCP process is explored by replacing the calcium with other cations, such as strontium. The results of transmission electron microscopy (TEM), 3D stochastic optical reconstruction microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and high-resolution TEM with selected area electron diffraction demonstrate that biomimetic mineralization of collagen fibrils and demineralized dentin could be fulfilled with Sr&F-codoped hydroxyapatite (HAp) after they are treated with poly-aspartic acid-strontium (PAsp-Sr) suspension followed by a phosphate&fluoride solution. Moreover, dentin remineralized with Sr&F-codoped HAp exhibits in vitro and in vivo antibacterial ability against Streptococcus mutans. The cytotoxicity and oral mucosa irritation tests reveal excellent biocompatibility of mineralization mediums (PAsp-Sr suspension and phosphate&fluoride solution). The demineralized dentin's mechanical properties (elastic modulus and microhardness) could be restored almost to that of the intact dentin. Hence, the expansion concept of the PCCP process that replaces calcium ions with some cationic ions along with fluorine opens up new horizons for generating antibacterial remineralized dentin containing ions-doped HAp with excellent biocompatibility via biomimetic mineralization technology.

14.
BMC Oral Health ; 23(1): 855, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957656

RESUMO

The prism-interprisms level of the enamel hierarchical microstructure is the largest degree of structural variation and most sophisticated structural adaptation. We studied the effect of the prism-interprisms three-dimension spatial microstructure on the enamel bond strength. We prepared 11 groups of enamel segments: longitudinally sectioned segments with or without a 45-degree bevel (group = 2), horizontally sectioned segments with or without a 45-degree bevel of three regions (the incisal, middle, and cervical) (group = 6), and tangential (labial) sectioned segments of three regions (the incisal, middle, and cervical) (group = 3). The finished surface of each segment was observed by scanning electric microscopy (SEM) before treatment with four self-etch adhesive systems and applied with four corresponding composite resins. Resin-bonded enamel samples were prepared in beams for microtensile bond strength (MTBS) tests. The results were analyzed with a three-way ANOVA followed by Tukey's post-hoc HSD multiple comparisons procedure. SEM observations revealed complex arrangements of prisms and interprisms. MTBS measurement showed that the longitudinally sectioned group had the lowest value, without significant differences between the groups with or without 45-degree bevel. Combining SEM observations and MTBS measurements, the prism-interprisms microstructure varied with the incisor regions, and different prism-interprisms microstructures allowed diverse sectioned surfaces, which could affect the enamel bonding.


Assuntos
Colagem Dentária , Cimentos Dentários , Humanos , Cimentos de Resina/química , Microscopia Eletrônica de Varredura , Resistência à Tração , Esmalte Dentário , Resinas Compostas/química , Teste de Materiais , Propriedades de Superfície , Análise do Estresse Dentário
15.
J Evid Based Dent Pract ; 23(3): 101897, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689446

RESUMO

OBJECTIVES: Evidence of oral microbiota perturbations has been accumulated for lung cancers. This review focused on the oral microbiota alterations in population suffering from lung cancer. In addition, we also discussed conflicting data about the association between oral microbiota dysbiosis and risk of lung cancer. METHODS: A systematic search was conducted in Medline, Embase, PubMed, and Cochrane Library databases. The studies evaluated diversity and abundance of oral microbes in healthy and lung cancer individuals as well as association of periodontal disease and pathogens with lung cancer. Of 3559 studies, 28 included studies were performed in qualitative analysis, and 25 studies were used in meta-analyses for quantitative assessment. Heterogeneity was analyzed by using I² and chi-squared Q test statistics. Statistical analyses were performed by using the RevMan 5.4 software. RESULTS: Compared with the control, lung cancer patients had lower alpha diversity (Shannon: SMD = -0.54; 95% CI, -0.90 to -0.19; P < .01, I2 = 71%). In nested case-control studies, individuals with decreased alpha diversity tended to have an increased risk of lung cancer (observed species: HR = 0.90; 95% CI, 0.85-0.96; P < .01, I2 = 0%; Shannon: HR = 0.89; 95% CI, 0.83-0.95; P < .01, I2 = 0%). Overall, no strong evidence of association of relative abundance with specific oral microbes with lung cancers was found because of inconsistent data. No associations were found between periodontal pathogens and lung cancer risk (red complex: HR = 1.12, 95% CI: 0.42-3.02, P = .82, I2 = 62%; orange complex: HR =1.77, 95% CI: 0.78-3.98, P = .17, I2 = 36%), expect for Fusobacterium nucleatum (HR = 2.27, 95% CI: 1.13-4.58, P = .02, I2 = 0%). The positive association of periodontal disease with lung cancer risk was found (HR = 1.58, 95% CI: 1.25-2.00, P < .001, I2= 0%) with increase of periodontal diseases severity (HR = 2.39, 95% CI: 1.57-3.66, P < .001, I2 = 0%). However, such association was not found in never-smoker participants (HR = 1.00, 95% CI: 0.76-1.31, P = .37, I2= 7%). CONCLUSIONS: Lower alpha diversity of oral microbiome may be associated with a greater risk of lung cancer and might serve as a predictive signal of lung cancer risk. There was no strong evidence of relative abundance of oral microbial taxa and periodontal pathogens in lung cancer patients. Fusobacterium nucleatum might be a potential microbial candidate of biomarkers in lung cancer. Periodontal disease may be positively associated with lung cancer risk by confounding of smoking, but not an independent risk factor.


Assuntos
Neoplasias Pulmonares , Microbiota , Doenças Periodontais , Humanos , Estudos de Casos e Controles , Projetos de Pesquisa
16.
Adv Healthc Mater ; 12(19): e2300100, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36930219

RESUMO

Dentin hypersensitivity (DH) is triggered by external stimuli irking fluid flow through exposed dentinal tubules (DTs). Three commercially available desensitizing agents as control in this study only achieve limited occlusion depths of ≈10 µm in the DTs as well as scarce remineralization of demineralized dentin matrix. Herein, polyelectrolyte-calcium complexes pre-precursor (PCCP) process is proposed for managing DH that demineralized dentin with exposed DTs is rubbed with ultrahighly concentrated polyelectrolyte-calcium suspension (4 g L-1 -5.44 m) followed by phosphate solution (3.25 m), each 10 min, leading to heavy remineralization of demineralized dentin and compact occlusion of the DTs over 200 µm after 1 day of in vitro and in vivo incubation. For the first time, it is demonstrated that the PCCP process relies on the pH-dependent electrostatic attraction between electropositive polyelectrolyte-calcium complexes and electronegative inwalls of DTs comprised of collagen fibrils and hydroxyapatite crystals under alkaline condition. The PCCP process might shed light on a promising dentin desensitizing strategy for DH management via rapid in-depth DT occlusion and remineralization of demineralized dentin.


Assuntos
Cálcio , Sensibilidade da Dentina , Humanos , Cálcio/análise , Dentina , Sensibilidade da Dentina/tratamento farmacológico , Polieletrólitos , Microscopia Eletrônica de Varredura , Remineralização Dentária
17.
J Funct Biomater ; 14(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36826888

RESUMO

To evaluate the effects of airborne particle abrasion (APA) combined with MDP-containing resin cement, a glass-ceramic spray deposition (GCSD) method on the shear bond strengths (SBSs) and durability of 3 mol% yttrium oxide-stabilized zirconia ceramic (3Y-TZP) compared with lithium disilicate glass ceramics (LDGC). 3Y-TZP disks were randomly treated as follows: for Group APA+MDP, 3Y-TZP was abrased using 50 µm Al2O3 particles under 0.1 Mpa and bonded with MDP-containing resin cement; for Group GCSD, 3Y-TZP was treated with the GCSD method, etched by 5% HF for 90 s, silanized and bonded with resin cement without MDP. Group LDGC was bonded as the Group GCSD. X-ray diffraction (XRD), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray detector (EDX) were used to analyze the surface chemical and micro-morphological changes of the ceramics before bonding. The bonded ceramic specimens were randomly divided into subgroups, and the SBSs were determined before and after 10,000 thermocycling. The SBSs were analyzed with a one-way ANOVA analysis. Failure modes were determined with optical microscopy and SEM. The XRD, ATR-FTIR and XPS results identified the formation of lithium disilicate and zirconium silicate on 3Y-TZP after GCSD. The SEM micrographs revealed that 3Y-TZP surfaces were roughened by APA, while 3Y-TZP with GCSD and LDGC surfaces could be etched by HF to be porous. The APA treatment combined with MDP-containing resin cement produced the high immediate zirconia shear bond strengths (SBSs: 37.41 ± 13.51 Mpa) that was similar to the SBSs of the LDGC (34.87 ± 11.02 Mpa, p > 0.05), but, after thermocycling, the former dramatically decreased (24.00 ± 6.86 Mpa, maximum reduction by 35.85%) and the latter exhibited the highest SBSs (30.72 ± 7.97 Mpa, minimum reduction by 11.9%). The 3Y-TZP with GCSD treatment displayed the lower zirconia SBSs before thermocycling (27.03 ± 9.76 Mpa, p < 0.05), but it was similar to the 3Y-TZP treated with APA and MDP containing resin cement after thermocycling (21.84 ± 7.03 vs. 24.00 ± 6.86 Mpa, p > 0.05). The APA combined with MDP-containing resin cement could achieve the high immediate zirconia SBSs of those of the LDGC, but it decreased significantly after thermocycling. The GCSD technique could yield the immediate zirconia SBSs similar to those of LDGC before thermocycling, and long-term zirconia SBSs were similar to those of 3Y-TZP treated with APA followed by MDP-containing resin cement after thermocycling. Hence, the GCSD technique could enrich zirconia surface treatments and is an alternative to zirconia surface pretreatment for 3Y-TZP bond durability.

18.
PeerJ ; 11: e14868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846444

RESUMO

Objective: To systematically evaluate the disinfection efficacy of the two most frequently used disinfectants, sodium hypochlorite and glutaraldehyde, and their effects on the surface properties of four different dental impression materials. Methods: A systematic literature search was performed in four databases until May 1st, 2022 to select the studies which evaluated disinfection efficacy of disinfectants or surface properties of dental impressions after chemical disinfection. Main results: A total of 50 studies were included through electronic database searches. Of these studies, 13 studies evaluated disinfection efficacy of two disinfectants, and 39 studies evaluated their effects on the surface properties of dental impressions. A 10-minute disinfection with 0.5-1% sodium hypochlorite or 2% glutaraldehyde was effective to inactivate oral flora and common oral pathogenic bacteria. With regard to surface properties, chemical disinfection within 30 min could not alter the dimensional stability, detail reproduction and wettability of alginate and polyether impressions. However, the wettability of addition silicone impressions and the dimensional stability of condensation silicone impressions were adversely affected after chemical disinfection, while other surface properties of these two dental impressions were out of significant influence. Conclusions: Alginate impressions are strongly recommended to be disinfected with 0.5% sodium hypochlorite using spray disinfection method for 10 min. Meanwhile, elastomeric impressions are strongly recommended to be disinfected with 0.5% sodium hypochlorite or 2% glutaraldehyde using immersion disinfection method for 10 min, however, polyether impression should be disinfected with 2% glutaraldehyde.


Assuntos
Desinfetantes , Hipoclorito de Sódio , Hipoclorito de Sódio/farmacologia , Glutaral/farmacologia , Desinfecção/métodos , Fatores de Tempo , Desinfetantes/farmacologia , Propriedades de Superfície , Silicones , Alginatos/química , Bactérias
19.
BDJ Open ; 9(1): 2, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717535

RESUMO

BACKGROUND: The treatment and management of patients suffering from hypophosphatemic rickets (HR) remain a major challenge for dental practitioners and affected patients. OBJECTIVES: To report a case of HR presenting with specific dental findings and to review the dental manifestations and treatment of HR patients. METHODS: Case: A 32-year-old male presented with multiple dental abscesses and short stature. A thorough history was taken followed by clinical oral examination, and relevant radiological investigation was done. Literature research: In 2020, electronic literature searches were carried out in PubMed and complemented by a careful assessment of the reference lists of the identified relevant papers. Articles and reports fulfilled the inclusion criteria: indexed reviews, case series and case reports in English and restricted to human studies were considered. RESULTS: The intraoral examination revealed multiple dental abscesses and general periodontal disease; the radiographic examination showed poorly defined lamina dura, large pulp chambers and periapical lesions. Based on the contents of the 43 articles identified in the search, the current knowledge of dental manifestations, treatment and management of HR was summarized. CONCLUSIONS: As HR is a multisystem disease, multidisciplinary care is needed. By summarizing current evidences, we proposed an evidence-based dental management and provided recommendations on diagnosis and treatment of the disease. It is of profound clinical significance to acquire knowledge of the dental manifestations and provide optimal treatment options for patients.

20.
J Mech Behav Biomed Mater ; 137: 105567, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379092

RESUMO

OBJECTIVES: The study investigated the effects of an orthodontic primer containing amorphous fluorinated calcium phosphate (AFCP) nanoparticles on enamel white spot lesions (WSLs). MATERIALS AND METHODS: The AFCP nanoparticles were prepared and incorporated into Transbond XT Primer. Thirty-two human enamel slices were highly polished and randomly divided into four groups: no part covered (control), half covered with a primer containing 0 wt%, 25 wt%, and 35 wt% AFCP. Subsequently, samples were challenged by a modified pH-cycling and characterized by color measurement, micro-computed tomography, and scanning electron microscope (SEM). The bonding properties of the primers containing AFCP were assessed using shear bond strength test, and the mouse fibroblasts (L929) were employed to evaluate the cytotoxicity. RESULTS: When the enamel was challenged by pH cycling, 25 wt% and 35 wt% AFCP groups exhibited less color change (ΔE) and less mineral loss than the control and 0 wt% AFCP groups. The SEM images showed that the original microstructural integrity and mineral deposition rate of the enamel surface were better in the 25 wt% and 35 wt% AFCP groups. In particular, the 35 wt% AFCP group exhibited the best performance after 3 weeks of pH cycling. The shear bond strength and cell viability revealed no significant difference among the tested groups (P > 0.05). CONCLUSION: Using the primer containing 35 wt% AFCP might be a promising strategy for preventing the occurrence and development of WSLs during orthodontic treatment.


Assuntos
Cárie Dentária , Nanopartículas , Braquetes Ortodônticos , Animais , Camundongos , Humanos , Microtomografia por Raio-X , Fosfatos de Cálcio/química , Nanopartículas/química , Minerais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA